Game Utils for Amstrad CPC
Version 1.0

19 December 2014

Class GameSystem ceccecccccccccccecccecccsccccccscccscccscccscccscccsccccccscscscccscccscces D
MethOdS seccccsccccsssccssscccssscccsscccssscccsscccssscccsssccssscccssscessscccsssccssscccsss
static void SetStack(int address).ceccccccccccccccccccccscscccccscssccceseseed
static void RestoreStack() cececcscccscscccscccscscscscscscscscscscssscssscscsseed
static void DisableInterruptions() cceeccccccccccccccccccccccccscsccccccsseed
static void EnableInterruptions()eececsecececscsecececsecscscscsccscecceseced
static void SetInterruptions(int address).ccescecescessccescesccesscsesed
static void RestoreInterruptions() cecececcecccccccccccccscecccscecececececed

Class GameKeyboardeeeeceeeceecccccecccscccseccscccseccseccscccssccscccseccssccseccseccsecesld
Constanteccessccccsccccssscccsscccsssccssscccsssccssscccssscessscccsssccssscccsssccssscccssecd
MethOdS secccssccccsccccssscccsscccssscccsscccsssccssscccsssccssscccsssccssscccsssccssscccsseed
static void ReadKeys() cecccscsccccccscsssscscscsssscscscsssscscssssssescssssescsesd
static int GetKeys() cecccccccscscsccccscsssscscscsssscscscsssscscsssscsescsssscsesesd
static short TestKey(short NUMDETr) cecececcescccescessccesccsssescescssessecd

Class GAMESCIEEN cosscccsssccssscccsssccssscccsssccssscccsssccssscccsssccssscecsssccssscccssse O
MethOdS secccssscccsccccssscccsscccsssccssscccsssccssscccssscessscccsssccssscccsssccssscccssse O
static void PutImage(int x, short and, int image) cccccccccscscsscccsesd
static short TestImage(int x, short and, int image)ececccccscscsscccsesd
static int GetWidth() cececccccsccccccscsccscscscsssscscscsscscscsssscsescssssescsesd
static void SetMode(short Mode) sceececscscsssscscscsssscscsssssscscssssescses D
static void Clear(leccesscccscscsscscscsssscscscsssscscsssssscscsssscscssssssescsssssd

static void SetInks(short colourO, short colourl, short
colour?, short colour3d, short colour4, short colourd, short
colour6, short colour7, short colour8, short colour9, short

GameUtils For Amstrad CPC - Pag. 1

colourlO, short colourll, short colourl?, short colourl3, short
colourl4, Short colourl5) tit6

static void SetInks(short colourO, short colourl, short
COlouI‘z, Short COlouI‘S) it6

static void SetInks(short colourO, short colourl).cccessessecsecsecse®
static void SetInksBlack() cecescscccscscccscscscscscscscscscscssscssssscscscssesd
static void SetInksCOLoUTr() cecescscscscscscscscscscssscscssssssscsssssssssssseed
static void WaitFlyback(eecesesescscscscccscccscscscscscscscscscscssssssssssssesd
Class GameSpTrite ceccecccccccccccccccecccccccccccccccscccccccccscccscccccccccccccces O
Constantececscccsccssccosccsscccsccsscccscccscecscecscecscecscecscecssecssecssecssecssecssecs /
MEMbDET S ceccssecssscssecssscssscssscssscssscssscssscssscssscssscssscssscssscssscssscssscssscsss
MethOdS seccccsccccsssccssscccssscccsscccssscccsscccssscccsssccssscccsssccssscccsssccssscccsssd
ShOTT ISACLIVE() ceccccscsccccscscsscscscsssscscscsssscscssssescscssssescsssssscscssssed
void Create(int xInitial, short yInitial, int imageInitial)ceeee9
VOLid REMOVE() esed
VOid Update() sed
Short UpdateAutol) cecesceccscscsscscscsssscscscsssscscsssssscscssssescsssssscscssssed
short UpdateByKeys()eceesesesesscscscsssscscscsssscscsssscscscssssescsssssseseses L0
VOid Back() cocsescescsnsceccscsescescsecccescsescsccscsescescsesesccscsescssesesesces 10
Short IsC011ision()ececsscscscscsscscscsssscscscsssscscsssssscscssssescssssssesesss L0

Short ISCOlliSion(Gamesprite Sprite) CCCCCCCEECECECCCOCOCCCECECECECOCOGEEEE ll

GameUtils For Amstrad CPC - Pag. 2

This library consist of four classes oriented to the programming
of games.

Class GameSystem

Contains diverse methods for manage the system. The methods are
static and have to be called by means of the class, for example
GameUtils.SetStack(#46FC).

Methods

static void SetStack(int address)

Establishes the stack pointer to the value address and stores the
current value of the stack pointer. When the methods declare a big
quantity of local variables no static suits to establish the stack
pointer in a free zone of memory wider that the one who uses by
defect the CPC, for example #A6FC, if the program is in a low
direction of memory.

static void RestoreStackl()

Restores the stack pointer to the value stored in the last use of
SetStack. The use of RestoreStack has to be in the same block of
code that the SetStack previous that has to restore.

static void DisableInterruptionsl()

Switch off the 280 mode 1 interruptions and stores the current
direction of the interruptions.

static void EnableInterruptions()

Switch on the 280 mode 1 interruptions restoring the direction
stored in the last use of Disablelnterruptions. The use of
Enablelnterruptions has to be in the same block of code that the
DisablelInterruptions previous that has to restore.

static void SetInterruptions(int address)

Establishes as routine of 280 mode 1 interruptions the address
given like parameter, storing previously the current value of the
direction of interruptions. Can indicate like direction the one of

GameUtils For Amstrad CPC - Pag. 3

a function of the program with the operator & preceding to the
name of the function, with the parenthesis after him.

static void RestoreInterruptionsl)

Restores the direction of 280 mode 1 interruptions stored in the
last use of Setinterruptions. The use of Restorelnterruptionshas
to be in the same block of code that the Setinterruptions previous
that has to restore.

Class GameKeyboard

Contains constant and methods for the reading of the keyboard that
improve the speed with regard to the existent in the firmware. The
constants are public and can be used preceded of the name of the
class, for example GameKeyboard.keyA. The methods are static and
have to be called by means of the class, for example
GameKeyboard.ReadKeys().

Constant

The constants represent the keys of the Amstrad CPC. Consult the
file source of the class GameKeyboard.ccz80++to know all the
constants.

Methods

static void ReadKeys()
Realises a reading of the keyboard and stores the state of all the
keys.

static int GetKeys()

Generates a 1list of the keys pressed detected in the last use of
ReadKeys. It returns the address of start of the 1list generated. The
list is formed by values of size byte and after the last element is
the value —1. If it has not found any key pressed the value -1 is at
the beginning of the list.

static short TestKey(short number)

Checks if the key indicated as parameter was pressed in the last
use of ReadKeys. It returns O if it was not pressed or 1 if it was it.

GameUtils For Amstrad CPC - Pag. 4

Class GameScreen

Contains methods for the management of the screen, partly
improving the routines of the firmware.

The coordinates of screen have as origin the left upper corner and
the following values:

— Mode O: horizontal of O to 159, vertical of O to 199.
— Mode 1: horizontal of O to 319, vertical of O to 199.
— Mode 2: horizontal of O to 639, vertical of O to 199.

The images used can generate with the program SpritefditorCPC and
specify in the program in a one—dimensional table of type short,
passing his direction to the methods that require an image by
means of the operator & preceding to the name of the table.

So that the methods that use images work properly, the images have
to be designed having the background of ink O.

The colours used in the methods are the same that the used in the
BASIC of the Amstrad CPC.

Methods

static void PutImage(int x, short and, int image)

Draws in the coordinates x, y the image whose address give like
image.

static short TestImage(int x, short and, int image)

Check that in the coordinates x, y finds drawn the image whose
direction give like image and does not superimpose with any
another element of the screen.

static int GetWidth()

Returns the number of points in horizontal as the mode
established.

static void SetMode(short mode)

Establishes the mode of screen to the indicated like mode and
initialize the necessary values to draw images and manage sprites.

GameUtils For Amstrad CPC - Pag.

static void Clear()

Erases the screen with ink O.

static void SetInks(short colour0O, short colourl, short colour?,
short colour3, short colour4, short colourd, short colour6s, short
colour7, short colour8, short colour9, short colourlO, short
colourll, short colourl2, short colourl3, short colourl4, short
colourlb)

Establishes all the inks to the colours given as parameters and the
border to colourO. This overload of the function is destined to the
use in mode O of screen.

static void SetInks(short colourO, short colourl, short colourg,
short colour3)

Establishes the four first inks to the colours given as parameters
and the border to colourO. This overload of the function is
destined to the use in mode 1 of screen.

static void SetInks(short colour0O, short colourl)

Establishes the two first inks to the colours given as parameters
and the border to colourO. This overload of the function is
destined to the use in mode 2 of screen.

static void SetInksBlack()
Establishes all inks to the black colours.

static void SetInksColour()

Restores the colours established previously with Setlnksbefore
the use of SetInksBlack.

static void WaitFlyback()

Expects until the following flyback of screen to do a pause and
improve the movement of the sprites.

Class GameSprite

Represents a sprite in the screen. It has public members that
define the position, image, parameters and behaviour of the sprite.
The class also provides constant for manage the public members
mentioned and the value of return of the methods.

GameUtils For Amstrad CPC - Pag. 6

With regard to the coordinates of screen and the images it is
necessary to take into account the indicated for the class
GameScreen.

Constant

For the members actionLimitUp, actionLimitDown, actionLimitLeft
and actionLimitRight:

actionNone: indicate that the sprite will not do at all when
arriving to the limit.

actionStop: indicate that sprite will stop when arriving to the
limit.
actionRebound: indicate that the sprite will rebound when

arriving to the limit.

actionMove: indicate that the sprite appears by the contrary side
when arriving to the 1limit.

actionRemove: indicate that the sprite disappears and willb e
disable when arriving to the limit.

For the value of the members keyUp, keyDown, keyLeft and keyRight:

keyNothing: represent that the key assigned with this value is not
usable by the player.

For the member motionIype:

continuousNo: it indicates movement no continuous, is to say, that
the sprite only move when detecting press of a key of movement.

continuousYes: it indicates continuous movement, is to say, that
the sprite move continuously in direction as the last press of a
key of movement until it press another key of different movement.

For the value of return of the method Isdctive:
activeNo: sprite no active.
activeles: sprite active.

For the value of return of the methods Updateduto and
UpdateByKeys:

outUp: indicate that the sprite has arrived to the upper limit.

outDown: indicate that the sprite has arrived to the lower limit.

GameUtils For Amstrad CPC - Pag. 7

outLeft: indicate that the sprite has arrived to the left 1imit.
outRight: indicate that the sprite has arrived to the right 1limit.

For the value of return of the method IsCollision without
arguments:

collisionNo: indicate that the sprite no collide.

collisionYes: indicate that the sprite collide.

Members

x: horizontal position of the sprite in screen.
y: vertical position of the sprite in screen.

image: addres of the one—-dimensional table of type short that
contains the values for the image of the sprite.

xIncrement: horizontal increase positive or negative for the
movement of the sprite, initially with value O.

yIncrement: vertical increase positive or negative for the
movement of the sprite, initially with value O.

xSpeedKeys: increase for the movement of the sprite when is
presses the key of 1left or right movement, initially with value O.

ySpeedKeys: increase for the movement of the sprite when is presses
the key of movement up or down, initially with value O.

1imitUp: vertical coordinate of the upper 1limit for the sprite,
initially O.
limitDown: Vertical coordinate of the lower 1imit for the sprite,

initially equal to 200 minus the number of vertical points of the
image of the sprite.

limitLeft: horizontal coordinate of the left 1imit for the sprite,
initially O.

limitRight: horizontal coordinate of the right 1imit for the
sprite, initially equal to the width of the screen as the mode
selected minus the number of horizontal points of the image of the
sprite.

actionLimitUp: type of action when the sprite reaches the upper
1limit, initially equal to actionNone.

GameUtils For Amstrad CPC - Pag. 8

actionLimitDown: type of action when the sprite reaches the lower
1limit, initially equal to actionNone.

actionLimitLeft: type of action when the sprite reaches the left
limit, initially equal to actionNone.

actionLimitRight: type of action when the sprite reaches the right
1limit, initially equal to actionNone.

keyUp: number of the key that detect to move the sprite upwards,
initially equal to keyNothing.

keyDown: number of the key that detect to move the sprite
downwards, initially equal to keyNothing.

keyLeft: number of the key that detect to move the sprite to the
left, initially equal to keyNothing.

keyRight: number of the key that detect to move the sprite to the
right, initially equal to keyNothing.

motionType: type of movement for the control of the sprite via
keyboard.

Methods

short IsActivel)

Returns if the sprite is active or not.

void Create(int xInitial, short yInitial, int imageInitial)

Activates the sprite and draws it in screen in the coordinates
xInitial, yInitial with the image imagelnitial.

void Removel)

Deactivates the sprite and erases it of screen.

void Updatel()

Moves the sprite in screen to the position and with the image of
the current values of the members x, yand image. These values have
to have been modified by the program.

short UpdateAutol)

Modifies the members x and y by the members xIncrement and
YIncrement and moves the sprite in screen to the position and with
the image of the new values x, yand image.

GameUtils For Amstrad CPC - Pag. 9

Returns a value that indicates if the sprite has gone out of his
limits. If this has happened will have realised the action
established and the sprite in any case will draw out of the limits.
If it has produced the exit in more than a 1imit the value returned
will be the sum of the indicators of exit of screen of all 1limits.
For example if it has arrived to the upper and left 1imit, the value
given back will be outlUp + outLeft.

short UpdateByKeys()

Reads the keyboard and checks the keys established for the members
keyUp, keyDown, keyLeft, keyRight and as those that are pressed
moves the sprite in screen. If the type of movement specified in the
member motionType is continuous the sprite move in screen
although it do not detect any press of the keys.

It returns a value that indicates if the sprite has gone out of his
limits. If this has happened will have realised the action
established and the sprite in any case will draw out of the limits.

void Back()

Moves the sprite to the previous position after the use of
Updateduto or UpdateByKeys. It can be useful use this method in
case to detect a collision.

short IsCollision)

Returns if the sprite has collided as his current situation in
screen. The collision detects checking that the sprite is drawn on
bottom of ink O and there is not at all superimposed with him.

It is necessary to take into account that the overlap of the sprite
with other elements of screen only detect if the colours of some
point that superimposes are marked with X in the following table:

GameUtils For Amstrad CPC - Pag. 10

Ink of point in screen
01 2 3 4 5 6 7 8 9 1011 12 13 14 156

0

1 X X X X X X X X

2 XX XX XX X | X
g 3 XXX X[X[X XXX X|X|X
o 4 X[X[X[X X[X[X X
a5 X X[X[X[X[X X XX [X[X]|X
“ 6 X[X[X[X[X[X X[X[X[X[X[X
o 7 X[X[X[X[X[X[X XXX [X[X[X[X
5 8 X[X[X|[X[X|X[X[|X
9 9 X X X X[X[X[X[X|[X[X[X|X
“ 10 X[X X[X[X[X[X[X|[X[X[X[X
& 110 [X[X[X X[X[X[X[X[X[X[X[X[X[|X
12 X[X[X[X[X[X[X|X[X|X[X[X

13 X X[X[X[X[X[X[X[X[X[X[X[X[|X

14 X[X[X[X[X[X[X[X[X[X[X[X[X[|X

15 X[X[X[X[X[X[X|X[X[X|X[X|X[X]|X

short IsCollision(GameSprite sprite)

Returns if the sprite has collided with the sprite received as
parameter as their current situations in screen. This test does
considering the sprites like rectangles, by what can indicate
collision although only superimpose zones of the sprite of ink O.

GameUtils For Amstrad CPC - Pag. 11

