
GameUtils for Amstrad PCW – Pág. 1 

Game Utils for Amstrad PCW 

Version 1.0 

19 December 2014 

 

Class GameSystem............................................................................... 3 

Methods........................................................................................ 3 

static void SetStack(int address)............................................. 3 

static void RestoreStack() ....................................................... 3 

static void DisableInterruptions() .......................................... 3 

static void EnableInterruptions() ........................................... 3 

static void SetInterruptions(int address) ............................... 3 

static void RestoreInterruptions() .......................................... 4 

Class GameKeyboard ........................................................................... 4 

Constant ...................................................................................... 4 

Methods........................................................................................ 4 

static void ReadKeys().............................................................. 4 

static int GetKeys().................................................................. 4 

static short TestKey(short number)........................................... 4 

Class GameScreen............................................................................... 5 

Methods........................................................................................ 5 

static void ActivateMapping().................................................. 5 

static void DeactivateMapping() .............................................. 5 

static void PutImage(int x, short y, int image) ......................... 5 

static short TestImage(int x, short y, int image) ...................... 5 

static void Clear() ................................................................... 5 

static void WaitFlyback()......................................................... 6 

Class GameSprite............................................................................... 6 

Constant ...................................................................................... 6 



GameUtils for Amstrad PCW – Pág. 2 

Members........................................................................................ 7 

Methods........................................................................................ 8 

short IsActive() ....................................................................... 8 

void Create(int xInitial, short yInitial, int imageInitial)..... 8 

void Remove() ........................................................................... 8 

void Update() ........................................................................... 9 

short UpdateAuto() ................................................................... 9 

short UpdateByKeys() ................................................................ 9 

void Back()............................................................................... 9 

short IsCollision() .................................................................. 9 

short IsCollision(GameSprite sprite)......................................10 



GameUtils for Amstrad PCW – Pág. 3 

 

This library consist of four classes oriented to the programming 

of games. 

Class GameSystem 

Contains diverse methods for manage the system. The methods are 

static and have to be called by means of the class, for example 

GameUtils.SetStack(#8000). 

Methods 

static void SetStack(int address) 

Establishes the stack pointer to the value address and stores the 

current value of the stack pointer. When the methods declare a big 

quantity of local variables no static suits to establish the stack 

pointer in a free zone of memory wider that the one who uses by 

defect the CPC, for example #A6FC, if the program is in a low 

direction of memory. 

static void RestoreStack() 

Restores the stack pointer to the value stored in the last use of 

SetStack. The use of RestoreStack has to be in the same block of 

code that the SetStack previous that has to restore. 

static void DisableInterruptions() 

Switch off the Z80 mode 1 interruptions and stores the current 

direction of the interruptions. 

static void EnableInterruptions() 

Switch on the Z80 mode 1 interruptions restoring the direction 

stored in the last use of DisableInterruptions. The use of 

EnableInterruptions has to be in the same block of code that the 

DisableInterruptions previous that has to restore. 

static void SetInterruptions(int address) 

Establishes as routine of Z80 mode 1 interruptions the address 

given like parameter, storing previously the current value of the 

direction of interruptions. Can indicate like direction the one of 



GameUtils for Amstrad PCW – Pág. 4 

a function of the program with the operator & preceding to the 

name of the function, with the parenthesis after him. 

static void RestoreInterruptions() 

Restores the direction of Z80 mode 1 interruptions stored in the 

last use of SetInterruptions. The use of RestoreInterruptions has 

to be in the same block of code that the SetInterruptions previous 

that has to restore. 

Class GameKeyboard 

Contains constant and methods for the reading of the keyboard that 

improve the speed with regard to the existent in the BIOS. The 

constants are public and can be used preceded of the name of the 

class, for example GameKeyboard.keyA. The methods are static and 

have to be called by means of the class, for example 

GameKeyboard.ReadKeys(). 

Constant 

The constants represent the keys of the Amstrad CPC. Consult the 

file source of the class GameKeyboard.ccz80++ to know all the 

constants. 

Methods 

static void ReadKeys() 

Realises a reading of the keyboard and stores the state of all the 

keys. 

static int GetKeys() 

Generates a list of the keys pressed detected in the last use of 

ReadKeys. It returns the address of start of the list generated. The 

list is formed by values of size byte and after the last element is 

the value -1. If it has not found any key pressed the value -1 is at 

the beginning of the list. 

static short TestKey(short number) 

Checks if the key indicated as parameter was pressed in the last 

use of ReadKeys. It returns 0 if it was not pressed or 1 if it was it. 



GameUtils for Amstrad PCW – Pág. 5 

Class GameScreen 

Contains methods for the management of the screen, partly 

improving the routines of the BIOS. 

The coordinates of screen have as origin the left upper corner and 

the following values: horizontal from 0 to 719, vertical from 0 to 

255. 

The images used can generate with the program SpriteEditorPCW 

and specify in the program in a one-dimensional table of type 

short, passing his direction to the methods that require an image 

by means of the operator & preceding to the name of the table. 

For avoid problem should not be used memory from address #8000 to 

up, and set the stack address in #8000 or less with the method 

GameSystem.SetStack. 

Methods 

static void ActivateMapping() 

Enables the screen memory, banks 1 and 2, in the upper memory area. 

Thus the access to screen memory for reading and writing can be 

done from the address #9930 to #C32F, the roller RAM from #C600 to 

#C7FF, and the character set from #C800 to #FFFF. 

static void DeactivateMapping() 

Disables the screen memory from upper memory area restoring the 

banks 6 and 7 in this area. 

static void PutImage(int x, short y, int image) 

Draws in the coordinates x, y the image whose address give like 

image. 

static short TestImage(int x, short y, int image) 

Check that in the coordinates x, y finds drawn the image whose 

direction give like image and does not superimpose with any 

another element of the screen. 

static void Clear() 

Erases the screen with ink 0. 



GameUtils for Amstrad PCW – Pág. 6 

static void WaitFlyback() 

Expects until the following flyback of screen to do a pause and 

improve the movement of the sprites. 

Class GameSprite 

Represents a sprite in the screen. It has public members that 

define the position, image, parameters and behaviour of the sprite. 

The class also provides constant for manage the public members 

mentioned and the value of return of the methods. 

With regard to the coordinates of screen, the images and the use of 

memory it is necessary to take into account the indicated for the 

class GameScreen. 

Constant 

For the members actionLimitUp, actionLimitDown, actionLimitLeft 

and actionLimitRight: 

actionNone: indicate that the sprite will not do at all when 

arriving to the limit. 

actionStop: indicate that sprite will stop when arriving to the 

limit. 

actionRebound: indicate that the sprite will rebound when 

arriving to the limit. 

actionMove: indicate that the sprite appears by the contrary side 

when arriving to the limit. 

actionRemove: indicate that the sprite disappears and will b e 

disable when arriving to the limit. 

For the value of the members keyUp, keyDown, keyLeft and keyRight: 

keyNothing: represent that the key assigned with this value is not 

usable by the player. 

For the member motionType: 

continuousNo: it indicates movement no continuous, is to say, that 

the sprite only move when detecting press of a key of movement. 

continuousYes: it indicates continuous movement, is to say, that 

the sprite move continuously in direction as the last press of a 

key of movement until it press another key of different movement. 



GameUtils for Amstrad PCW – Pág. 7 

For the value of return of the method IsActive: 

activeNo: sprite no active. 

activeYes: sprite active. 

For the value of return of the methods UpdateAuto and 

UpdateByKeys: 

outUp: indicate that the sprite has arrived to the upper limit. 

outDown: indicate that the sprite has arrived to the lower limit. 

outLeft: indicate that the sprite has arrived to the left limit. 

outRight: indicate that the sprite has arrived to the right limit. 

For the value of return of the method IsCollision without 

arguments: 

collisionNo: indicate that the sprite no collide. 

collisionYes: indicate that the sprite collide. 

Members 

x: horizontal position of the sprite in screen. 

y: vertical position of the sprite in screen. 

image: addres of the one-dimensional table of type short that 

contains the values for the image of the sprite. 

xIncrement: horizontal increase positive or negative for the 

movement of the sprite, initially with value 0. 

yIncrement: vertical increase positive or negative for the 

movement of the sprite, initially with value 0. 

xSpeedKeys: increase for the movement of the sprite when is 

presses the key of left or right movement, initially with value 0. 

ySpeedKeys: increase for the movement of the sprite when is presses 

the key of movement up or down, initially with value 0. 

limitUp: vertical coordinate of the upper limit for the sprite, 

initially 0. 

limitDown: Vertical coordinate of the lower limit for the sprite, 

initially equal to 200 minus the number of vertical points of the 

image of the sprite. 



GameUtils for Amstrad PCW – Pág. 8 

limitLeft: horizontal coordinate of the left limit for the sprite, 

initially 0. 

limitRight: horizontal coordinate of the right limit for the 

sprite, initially equal to the width of the screen as the mode 

selected minus the number of horizontal points of the image of the 

sprite. 

actionLimitUp: type of action when the sprite reaches the upper 

limit, initially equal to actionNone. 

actionLimitDown: type of action when the sprite reaches the lower 

limit, initially equal to actionNone. 

actionLimitLeft: type of action when the sprite reaches the left 

limit, initially equal to actionNone. 

actionLimitRight: type of action when the sprite reaches the right 

limit, initially equal to actionNone. 

keyUp: number of the key that detect to move the sprite upwards, 

initially equal to keyNothing. 

keyDown: number of the key that detect to move the sprite 

downwards, initially equal to keyNothing. 

keyLeft: number of the key that detect to move the sprite to the 

left, initially equal to keyNothing. 

keyRight: number of the key that detect to move the sprite to the 

right, initially equal to keyNothing. 

motionType: type of movement for the control of the sprite via 

keyboard. 

Methods 

short IsActive() 

Returns if the sprite is active or not. 

void Create(int xInitial, short yInitial, int imageInitial) 

Activates the sprite and draws it in screen in the coordinates 

xInitial, yInitial with the image imageInitial. 

void Remove() 

Deactivates the sprite and erases it of screen. 



GameUtils for Amstrad PCW – Pág. 9 

void Update() 

Moves the sprite in screen to the position and with the image of 

the current values of the members x, y and image. These values have 

to have been modified by the program. 

short UpdateAuto() 

Modifies the members x and y by the members xIncrement and 

yIncrement and moves the sprite in screen to the position and with 

the image of the new values x, y and image. 

Returns a value that indicates if the sprite has gone out of his 

limits. If this has happened will have realised the action 

established and the sprite in any case will draw out of the limits. 

If it has produced the exit in more than a limit the value returned 

will be the sum of the indicators of exit of screen of all limits. 

For example if it has arrived to the upper and left limit, the value 

given back will be outUp + outLeft. 

short UpdateByKeys() 

Reads the keyboard and checks the keys established for the members 

keyUp, keyDown, keyLeft, keyRight and as those that are pressed 

moves the sprite in screen. If the type of movement specified in the 

member motionType is continuous the sprite move in screen 

although it do not detect any press of the keys. 

It returns a value that indicates if the sprite has gone out of his 

limits. If this has happened will have realised the action 

established and the sprite in any case will draw out of the limits. 

void Back() 

Moves the sprite to the previous position after the use of 

UpdateAuto or UpdateByKeys. It can be useful use this method in 

case to detect a collision. 

short IsCollision() 

Returns if the sprite has collided as his current situation in 

screen. The collision detects checking that there is not any object 

in screen superimposed with the sprite. 



GameUtils for Amstrad PCW – Pág. 10 

short IsCollision(GameSprite sprite) 

Returns if the sprite has collided with the sprite received as 

parameter as their current situations in screen. This test does 

considering the sprites like rectangles, by what can indicate 

collision although only superimpose blank areas of the sprite. 

 


